
Behavior Research Methods. Instruments. & Computers
1991. 23 (4). 523-536

NeXT in the psychology laboratory:
An example of an auditory pattern tracking task

ANNABEL J. COHEN, MICHAEL P. LAMOUREUX, and DEBORA A. DUNPHY
Dalhousie University, Halifax, Nova Scotia, Canada

The NeXT computer system is a relatively new, inexpensive, 68040-based computer with high
computational power, storage, graphics, audio, and other capabilities. The present article exa­
mines the effectiveness of the NeXT for studies of auditory sequential memory. In these studies,
subjects track the time of occurrence of a sequence of tones, using a mouse that controls the posi­
tion of sliders represented on the computer screen interface. This interface allows the subject
to represent the different sounds on the y-axis and the time of their occurrence on the z-axis.
The computer produces random orders of stimulus sequences, provides feedback, and stores and
transforms accuracy and response time data from the slider positions for subsequent analysis.
A tutorial for the development of this interface and its variations is provided. As well, proce­
dures for programming the experiment and the operation of the interface are described, accom­
panied by a frank account of issues surrounding development and management. It is concluded
that high-quality sound and ease of both graphics interface design and program modification make
NeXT an attractive option for research on auditory sequential order, promising much for further
applications as well. Successful use of the NeXT, however, demands much from technical person­
nel for both programming and system management.

The NeXT computer system, released in September
1988, was designed to serve the university community bet­
ter than computers such as Macintosh, MS-DOS
machines, and even SUN workstations. The present arti­
cle is the first in BehaviorResearch Methods, Instruments.
& Computers to focus on this "new" machine. This long
time lag after NeXT's introduction is but one indicator
that NeXT has not taken behavioral researchers by storm.
Why not? The present article details the experience of one
laboratory that gambled on the NeXT for auditory
research. In particular, the application of the NeXT for
research on sequential memory for auditory patterns is
described.

Current models of the NeXT computer system run on
the Motorola 68040 25-MHz CPU, which has an integral
floating point unit. 1 In its most affordable configuration,
the NeXTstation includes 8 MB of main memory, a 105­
MB internal hard disk drive, the multitasking UNIX oper­
ating system, a 17-in. (diagonally) high-resolution (1,120
x 832 pixel) monochrome display, stereo CD-quality (16­
bit) sound synthesis based on the Motorola 56001 DSP,

This work was supported by an operating grant andan equipment grant
from theNatural Sciences andEngineering Research Council of Canada,
awarded to A. J. Cohen. We thank M. Mieszkowski for first directing
our attention to NeXT; Tracy Rose and Judy Roy from the NeXT
Waltham office for cooperation; and Steve Burke, Bradley Frankland,
Jim Leary, and Michael McNamara for testingthetutoria1 andcommenting
on thepaper. Appreciation to theanonymous reviewers is also extended.
Requests for reprints may be sent to A. J. Cohen, Department of Psy­
chology, Dalhousie University, Halifax, Nova Scotia B3H 4JI, Canada
(e-mail: acohen@AC.DAL.CA).

Ethernet support, the sophisticated mathematical software
package Mathematica, and Display PostScript. The more
costly NeXTcube offers the additional storage option of
a 256 MB optical disk drive. Color versions are available
for all models. Thompson and Baran (1988), Thompson
and Smith (1990), and Webster (1989) provide further
details on the earlier models based on the Motorola 68030.

The cost of the NeXTstation ($4,995 US list, with dis­
counts as low as $3,500 through university programs, de­
pending on volume commitment; with laser printer, an
additional $1,795 list) compares well with that of Macin­
tosh and mM microcomputers, both of which lack the
storage, computational power, graphics, and sound and
communication capabilities offered as standard on the
NeXT. Yet although the NeXT offers much more poten­
tial for the same cost, there are hidden costs too. Because
it is a new machine, little software is available for it; there­
fore, one needs to produce the requisite software, to trans­
late applications from older systems to the NeXT, and
even to learn how to use the NeXT. On such a complex
machine, system management requires considerable ex­
pertise and time. Thus, in spite of certain superior aspects
of the NeXT, older tried and true machines like the mM
(and compatibles) and the Macintosh still offer certain ad­
vantages.

In our laboratory, we had been using the Commodore
Arniga with considerable success for research on audi­
tory perception (Cohen & Mieszkowski, 1989). The Am­
iga, however, provided only 8-bit resolution for sound
synthesis, and some of our research required greater reso­
lution than that. High-quality sound was a standard fea­
ture on the NeXT computer and not on any others. This

523 Copyright 1991 Psychonomic Society, Inc.

524 COHEN, LAMOUREUX, AND DUNPHY

factor was probably the most important one in our choos­
ing the NeXT. It meant learning about one machine rather
than about both a new machine and a new peripheral
sound-generating device. We have absolutely no regrets
about the choice of the NeXT for this work. We are satis­
fied with its sound-production capabilities for work in au­
ditory pattern recognition. In addition, other capabilities
of the system have facilitated our progress. In particular,
the ease of developing graphics for the human-computer
interface and the method for relating this interface to soft­
ware have emerged as very attractive features. However,
this progress has depended on high-level technical sup­
port for system management and program development.

In what follows, we report some of our experiences of
using the NeXT. More specifically, we describe the de­
velopment of a computer program for studying listeners'
abilities to remember the order of a sequence of tones.
We first outline the problems of past methods for study­
ing auditory sequential order. We then survey the step­
by-step development of the interface and what is involved
in making variations on that interface. A detailed tutorial
is provided in the Appendix for those who wish immedi­
ate, hands-on experience, the best way of getting to know
the machine. Subsequently, information about the design
of the underlying software is provided. This part of the
report has potentially two audiences, the programmer and
the researcher director, who may be one and the same
person but often are not. The programmer will be able
to see what is specifically required in developing software
for the experiment with a given interface, and the research
director who may be less familiar with programming de­
tails will have sufficient information to determine the level
of expertise required to take advantage of programming
on the NeXT.

RESEARCH METHODS FOR STUDYING
AUDITORY SEQUENTIAL MEMORY

The ability to remember sequences of events is a long­
standing research interest in experimental psychology.
Referred to sometimes as the problem of serial order, it
has been addressed with strings of digits and lights in
sequence-eompletion tasks and sequence-reproduction
tasks (Restle, 1970). Some researchers have examined the
listener's ability to represent the order of a sequence of
tones as well. For example, Warren and Byrnes (1975)
asked subjects to identify which of six possible orders of
four tones had occurred. In another task, their subjects
selected four cards (representing the lowest tone, the next
lowest, the next lowest, and the highest) in the order in
which they thought these tones had appeared in the se­
quence. To study recall of serial order in longer se­
quences, Cohen and Frankland (1990) asked subjects to
record the order of an 8-tone sequence on an 8 x 8 matrix
with a pencil. There was one printed matrix to complete
for each of 36 sequences tested. Data were scored by
hand. Still other researchers have asked musically trained

listeners to use musical notation to represent their memory
of sequences (Boltz & Jones, 1986).

The methods for studying auditory sequential memory
described above are limited in various ways. Absolute
identification as used by Warren and Byrnes (1975) is con­
fined to a small subset of orders, since scanning hundreds
of possible patterns for matching is unpractical and
memory for more than, say, seven is error prone. Order­
ing of cards, also used by Warren and Byrnes, is cum­
bersome and requires that the experimenter write down
each order as the subject produces it. Paper-and-pencil
tasks, as used by Cohen and Frankland (1990), allow
many possibilities for human error: subjects may fill in
more than one square at a time, they may forget to com­
plete a square, and there is a subjective element in scor­
ing the data. Musical notation, as used by Boltz and Jones
(1986), is limited both to musicians and to tones that fall
within the musical notation categories. In addition, none
of these methods allows for the collection of response
time, which would complement accuracy data. A method
was therefore devised on the NeXT to overcome these
problems. The particular experiments to be described ex­
amined subjects' ability to remember or track the order
of presentation of eight tones.

An interface on the screen of the NeXT monitor was
defined with eight vertical sliders, one for each serial p0­

sition in the eight-tone sequence (see Figure 1). The first
slider represented the first temporally presented tone of
the sequence, the second slider represented the second
tone, ... the eighth slider represented the final tone. The
vertical axis represented the ordinal position of the tone
with respect to highness and lowness in pitch. Only eight
vertical positions were represented, because for any se­
quence of eight different tones, there are only eight ordi­
nal positions necessary to describe the set. In the experi­
ment, the subject heard five repetitions of a sequence of
eight tones and was required to indicate for each serial
position which particular tone had occurred. Thus, to
represent an ascending scale of eight tones, successive
sliders would occupy Positions 1,2, 3,4,5,6, 7, and
8. The positioning of the sliders was controlled with a
mouse. Placement of the cursor at a potential position for
the slider and clicking the mouse automatically attracted
the slider to that position.

Tones in these studies ranged from 200 to 400 msec
in duration, including intertone interval. Thus sequences
were between 1.6 and 3.2 sec in length. Sequences were
repeated up to five times in succession. After the subject
had completed his or her response and the Done button
was pressed, the position of the sliders was recorded by
the computer and feedback regarding the number of sliders
correct was returned to the subject. The time from the
onset of the auditory pattern to the end of the response
was also recorded. The subject, when ready, pressed the
Go button, and the next trial began.

This interface provided a number of advantages over
earlier methods of examining auditory pattern tracking.

NEXT AUDITORY PAITERNS 525

Figure 1. Test window for the Auditory Sequence Tracker Test.

In contrast to the paper-and-pencil task of Cohen and
Frankland (1990), there was a fresh panel presented for
each new sequence; thus, judgments were independent.
Sequence order was random and different for each sub­
ject. Only one position could be filled in for each serial
position. The data from the sliders were scored by the
computer; hence no experimental error entered into the
results. The data were also automatically transformed and
sent to another computer for analysis, thus saving time
and increasing efficiency. The method provided a second
dependent measure, response time. Feedback was pro­
vided to subjects. The technique saved material resources
such as paper (to do the test properly would have involved
over 70 separate sheets per subject). Finally, the inter­
face was amenable to a variety of changes that could be
made to examine theoretical and practical issues.

These advantages were thought to outweigh certain dis­
advantages. For example, subjects were not equally
familiar or facile with the mouse. Thus, additional research
would be required to distinguish aspects of performance
associated with the input method itself from aspects as­
sociated with the variables of interest in the task, scale
structure, and serial rules, although the NeXT did make
it possible to develop these additional control studies. The
computer and even the optical disks were expensive rela­
tive to a cassette tape recorder and a few pencils. Testing
was limited to I subject per machine. Such costs might
be balanced against those of personnel costs incurred by
time spent to hand code the data.

In what follows, we first provide an overview of the
development of the interface and its variations. Then we
describe what is involved in developing the program to

526 COHEN, LAMOUREUX, AND DUNPHY

Figure 2. (a) Main menu for the Interface Builder. (b) Interface
Builder's Palettes window.

link the interface to the computer. In our focus on this
particular interface and paradigm, we do not mean to im­
ply that it is the only or best way to study auditory pat­
tern tracking. Our purpose is to highlight a technique that
is readily available on the NeXT and is not as available
on other machines. It is an example of new paradigms

that can be invented and explored in ways that may not
be accessible on other machines at present.

The NeXT Interface Builder enables one to create a user
interface directly with graphics rather than indirectly with
files of programming code. From a palette of predefined
objects, such as sliders, windows, buttons, switches, or
objects of your own design, the interface takes shape as
easily as moving the mouse. The interface is created by
dragging objects from a palette (Figure 2b) and physically
manipulating their features, such as appearance and po­
sition. A person with no previous experience with NeXT
might require from 1 to 2 h to produce the interface shown
in Figure I; the experienced user could require less than
20 min. A complete tutorial for the development of the
interface in Figure I and its transformation into Figure 3
is provided in the Appendix. Here, we provide only an
overview of the procedures but emphasize that the best
way to understand the graphical user interface (GU!) is
first-hand experience.

Launching the Interface Builder will automatically
generate the application menu (IB menu, Figure 2a) and
the Palettes window (Figure 2b); a command from the
menu will open an empty window and thus display the

BUILDING AN INTERFACE: TUTORIAL

b)a)

Figure 3. Interface adaptation to the test window of the Auditory Sequence Tracker Test. Animal pictures represent four different
sounds and replace the eight different auditory frequencies of the original version, in Figure 1.

foundation for interface building. The application is con­
structed by dragging objects from the Palettes window to
the empty window, where the object may be directly
manipulated (title, size, position, etc.) with the use of
menu commands and the mouse. Whereas dragging the
cursor on an object or window will vary its size and po­
sition, the Inspector command (on the Tools submenu;
Figure 2a) enables one to alter graphic and nongraphic
attributes of windows or objects within windows more pre­
cisely. In the present case, GolDone buttons and slid~~s

were created with the aid of menu commands that facih­
tate either the creation of replicas or the alignment of a
multitude of objects or patterns. Even without any under­
lying programming, the response of buttons and slide!s
can be tested by using the Test Interface command avail­
able on the Files submenu of the Interface Builder menu
(Figure 2a). Thus, in this test mode, clicking on the Go
button will highlight it, and clicking and moving the cur­
sor over a slider will move the slider knob.

Changes to the interface for a different application ~an

be relatively simple. For example, through the alteration
of button sizes, eliminating sliders, changing instructions,
and adding icons, the Auditory Sequence Tracker can now
serve a completely different purpose. For example, the
Auditory Sequence Tracker was modified for testing chil­
dren's ability to report the order of four animal vocaliza­
tions. The interface shown in Figure 3 was developed.

The task for the child is basically the same as that for
the adults, but the child must report the order of four dif­
ferent animal sounds rather than eight different frequen-

Figure 4. Interface for testing pattern matching of auditory se­
quences.

NEXT AUDITORY PATTERNS 527

Figure 5. Interface for testing auditory sequence memory through
numeric response.

cies. This particular adaptation also illustrates the use of
the built-in graphic resources of the Digital Webster dic­
tionary, the source of the pictures of the animals. Another
response interface, shown in Figure 4, was used to ex­
amine the listeners' ability to match a graphic represen­
tation to the auditory sequential pattern, and the inter­
face shown in Figure 5 was used to examine numerical
responses to the sequence. We emphasize that construc­
tion of such interfaces requires a matter of minutes, and
minor modifications, a matter of seconds. NeXT promo­
tion materials offer many examples of more complex and
impressive graphics than these. Our examples illustrate
specific applications in our laboratory. Having now sug­
gested that such interfaces can ~ relatively easily d~­

signed, we next address the question of the ease of their
implementation.

SOFTWARE ISSUES:
PROGRAM DEVEWPMENT

The source program for the Auditory Sequence Tracker
consists of about 700 lines ofObjective C code, of which
approximately 40% were automatically generated by the
Interface Builder, and the remainder developed over about
40 h by an experienced C programmer (but not NeXT ex­
perienced). What is remarkable is that although the user
interface for the program is quite complex, involving win­
dows, buttons, sliders, and editable text fields, no code
is required to control these graphical objects. In fact, once
the user interface has been designed (by dragging andplac­
ing objects on the screen using the Interface Builder, as
described in the last section), the program can be immedi­
ately compiled into a functional shell of an application.
It is the NeXTStep environment that takes care of the user
interface andmakes programming GUI-based applications
on the NeXT relatively effortless. NeXT provides a num­
ber of tutorial programs on the system that demonstrate
the basics of writing a graphically based application in
Objective C; more complex examples are available from
archive sites on the Internet.

Objective C is used in order to communicate with the
graphical objects in the user interface; the standard GNU C

528 COHEN, LAMOUREUX, AND DUNPHY

compiler that comes with the NeXT System 2.0 has been
extended to compile standard C, Objective C, or C+ +
files, It is neither difficult to make the transition to an
object-oriented mode of programming, nor is it even nec­
essary, because it is possible first to write the major part
of a program using the usual procedural methods of stan­
dard C, and then to exploit Objective C to communicate
with the user interface.

To communicate with the Gill, it helps to think of the
objects on the screen as being smart, as if they know how
to do things themselves; all you need to do is tell them
what to do for you. For instance, to tell a sliding control
to set itself to Position 2.5 on the screen, the code is:

[theSlider setFloatValue:2.5];

This bracketed notation is the Objective C syntax for send­
ing the message setFloatValue to the object theSlider, with
parameter 2.5. This action will cause the slider to move
its control to the position corresponding to value 2.5-it
moves on the screen and updates values automatically.

Other collections of data can be treated as objects and
manipulated via Objective C. For instance, the Sound Kit
provides simple methods for working with sounds. To
load a sound file from disk and play it, one creates a sound
object, sends it a message to load in the file, followed
by another message to play. This takes only four lines
of code in Objective C:

id theSound; II define a variable
theSound = [Sound new]; II create sound obj
[theSound readSoundFile:"foo.snd"]; II load in data me
[theSound play]; II play it

There are also object-based methods for combining
sounds, which are used in our programs to create melo­
dies from collections of short sound files representing
tones. Disk access can also be accomplished from an
object-oriented perspective, but in this application, the
standard C library functions fopen, fclosed, fread, and
fwrite were used.

It is also possible to modify given objects to create new
ones that are similar to the original. For instance, the Ap­
plication object of the NeXTStep kit was modified so that
when our test program is launched from a shell, its front
window would immediately be activated, with a cursor
ready and waiting for text entry into a text form. Thus,
subjects in an experiment would be presented with a test
program ready for their input. In the Interface Builder,
using the Class List panel, a subclass of the Application
object was created, named AutoStart. In the Class Inspec­
tor, the appDidInit action was added, and theFrontWin­
dow and theFrontForm outlets then unparsed this object.
This created two Objective C source files, AutoStart.h
and AutoStart.m, to which the addition of three more lines
of code yielded the following:

II me AutoStart.h
II Generated by Interface Builder
#import < appkitlApplication.h >

@interface AutoStart:Application
{

id theFrontWindow;
id theFrontForm;

}
- appDidInit:sender;
@end

II me AutoStart.m
II mostly generated by Interface Builder
#import "AutoStart.h"
@implementation AutoStart
-appDidinit
{

[self activateSelf:YES]; II added
[theFrontWindow makeKeyAndOrderFront:self] II added
[theFrontForm selectTextAt:O]; I I added
return self;

}
@end

The default File's Owner object in the icon list was then
reclassed as an AutoStart object, and connections were
drawn between this object and the FrontWindow and
FrontForm objects. Thus the startup behavior of our ap­
plication was modified.

Since the Auditory Sequence Tracker is a relatively com­
plicated program, the programmer code was partitioned
into four objects: the Rounder, the SoundBag, the Score­
Keeper, and the Brains. The Rounder simply monitors the
sliders in the graphical interface, and forces them to move
only to integer step values I to 8, so that the subject's re­
sponse is unambiguous. The SoundBag keeps track of the
collection of scales and orders used to create the melo­
dies, in random order, and plays them on request. The
ScoreKeeper records to disk the subject's responses in the
test, along with a record of the stimulus and timing, and
presents feedback to the subject. The Brains is the core
of the program, keeping track of timing, noting which
melodies have been played so that they are never repeated,
waiting for the subject to respond, and basically coordinat­
ing all aspects of the test. In the implementation of these
modules as Objective C objects, these four not only com­
municate with the graphical objects in the user interface,
but with each other as well, using links and connections
created in the Interface Builder.

Figure 6 shows the collection of objects that are active
in the program, both user interface objects and the con­
trol objects mentioned above, .the links between them, and
the flow of data. The basic operation is as follows. When
the Go button is pressed, a message is sent to the Brains,
telling it to start a trial. The Brains passes a message to
the SoundBag, telling it to play the next melody, which
has been constructed according to rules given in the Con­
figuration File. While the SoundBag is playing the
~elody, the subject is moving the sliders in the graphical
interface, When the Done button is pressed, the Brains
gets the message to stop the trial. The Brains then tells

NEXT AUDITORY PATTERNS 529

Messaging and Data Flow

Figure 6. Diagram of Messaging and Data Flow among the In­
terface Modifier, User Interface, Control Objects, and Disk Files.

the ScoreKeeper to record the position of the sliders and
save the response set onto the disk me. The program is
now ready for the next trial, so the Brains reinitializes,
and waits for the Go button to be pressed again.

In this application, sounds are managed as objects, and
creating and playing a melody in the program is thus sim­
ply a matter of loading in the separate notes as objects
from sound files on disk, combining them to create the
melody, and sending a Play command to the combined
object. To create the sound files in the first place, NeXT
provides two tools: the Sound Kit and the Music Kit (Jaffe
& Boynton, 1989). The Sound Kit is the simpler of the
two. It is a collection of objects that generate and manage
sounds on the NeXT, making use of the CD-quality au­
dio output to produce the sounds, and the toll quality
microphone input to record them. With the SoundEditor
program, an application provided by NeXT which uses
the Sound Kit, a tone can be recorded via the microphone
and saved to disk as an object for later use in the melody.
Also with the SoundEditor, the waveform of the note can
be viewed, and simple modifications such as cutting, in­
serting, and deleting segments of sound can be made. The
quality of the standard microphone input is not optimal,
with 8-bit, 8-kHz sampling, but it is useful for recording
environmental "notes" such as a dog bark. For higher
quality recording, 16-bit digital microphones are avail­
able from several third-party suppliers.

For more structured sounds, the Music Kit provides the
tools to create tones with specific spectral and temporal

HARDWARE ISSUES:
SOUND AND TIMING

characteristics. A simple text file with a list of note fre­
quencies, amplitudes, envelopes, and overtones is the in­
put to a score-playing program, which takes the text and
creates the sampled sound as indicated. The sound is syn­
thesized with the DSP hardware on the NeXT and saved
to disk for later use by the SoundEditor, in preparation
for the melody tester. The Music Kit may also be used
to generate sound directly for playback through the
NeXT's speaker or line-outs, rather than first saving to
disk. The DSP synthesis is fast enough to generate moder­
ately complex sounds in real time, which can be used
directly in a program, without the need to manage large
sound files in memory or on disk.

If none of these methods is adequate, the samples for
a digitized sound can be calculated directly from a mathe­
matical formula within a C program. This is a very flexi­
ble way of generating sound for playback, but it is often
unnecessary, because the Music Kit alone provides a wide
range of sounds. Our choice was to use the Music Kit,
saving the sound files to disk for later use in the Audi­
tory Sequence Tracker program. Although very complex
sounds may be created in this manner, we generated sine
waves in the western chromatic scale, using an exponen­
tial ramp up / ramp down envelope. The note parameters
to the Music Kit were specified with double precision,
generated on the 24-bit Motorola DSP at 44. I-kHz sam­
pling, and stored as 16-bit stereo samples at 44.1 kHz.
The sine waves were generated from a 256-sample, 24­
bit table by using interpolation, which gave a theoretical
total harmonic distortion of less than 1.5 . 10-9 in the re­
sulting signal.

The accuracy of our method of sequence generation is
influenced directly by the NeXT hardware in two impor­
tant aspects, the quality of the sound and the accuracy of
the timing. We made extensive measurements of the
sound-output capabilities of the NeXT cube (Lamoureux
& Cohen, 1990) and found it to be exceptionally good.
The sound output is based on a 16-bit, 44. I-kHz digital­
to-analog (DAC) converter housed in the video monitor.
We measured approximately 13 bits of linearity on the
DAC, with a frequency response of ±.5 dB in the range
of 1 Hz to 20 kHz, a signal-to-noise ratio of 88 dB, and
a uniform phase delay of 6 p.sec between the left and right
channels. As a pure-tone generator, the NeXT produces
a tone whose frequency is accurate to within ±.002%
(crystal controlled) with harmonics that appear at 75 dB
below the fundamental. The DSP56001 signal-processing
chip and Music Kit software generate signals of equal or
greater quality than what the hardware can reproduce. 2

The timing accuracy is a much more difficult issue. The
NeXT runs on the Mach operating system, a multiuser,
multithreading UNIX kernel, which implies that more than
one process at a time can be executing on the CPU, even
within the same program. Ping commands are available

Interface
Modifier

i Disk
L..!:!I.~m ..

Response
File

Configuration
File

530 COHEN, LAMOUREUX, AND DUNPHY

to coordinate the display of data on the screen with the
playing of sounds and the actions of the user (key­
pressing, mouse clicks), but in principle, the concept of
referencing a unique "time" in such a system is com­
plex at best. At the core of the hardware is a real-time
clock that can be accessed directly from a test program
for microsecond accuracy (although there is at least a 100­
p.secoverhead in the calling subroutine), so it seems that
there is potential for very accurate timing. There is also
some suggestion from the NeXT documentation that the
DSP56001 can be used directly as a real-time clock and
to coordinate the many timed processes in a test, although
how to do this is unclear and would require significant
programming. Another possibility is to record user events
(mouse clicks, keypresses) on the basis of the event
record, which store the time accurate to 1170 of a sec­
ond. In our case, we recorded the time on the basis of
when the user clicked the Done button. Since the GU!
records a button activation when the mouse button is
released and not when it is first clicked, we had a
100-200 msec discrepancy between when the user was
done and when the program recorded the time. This dis­
crepancy swamps any other possible timing inaccuracies
in the system, but since each timed task took around
10-30 sec, an accuracy of 1,4 sec was judged acceptable.
Another issue is the question of how a multiuser environ­
ment might interfere with the timing of an experiment;
that is, multiple users compete for CPU and disk
resources, possibly disturbing critical timing. We avoided
this problem altogether by running our tests in a single­
user mode. These timing problems are not unique to the
NeXT; related problems occur with the Macintosh (Keiley
& Higgins, 1989; Westall, Perkey, & Chute, 1989) and
the ffiM PC (Heathcote, 1988).

DEVELOPMENT ISSUES:
ADAPTING THE PROGRAM,

DEBUGGING, DOCUMENTATION

Once the Auditory Sequence Tracker was up and run­
ning, it was a simple matter to modify the program to per­
form a variety of similar auditory tests. For instance, a
small change in the code for Brains added the ability to
do blocked tests, in which only one scale was presented
during a block of trials. Working with different melodies
(including different sequential orders of notes and differ­
ent scales) was accomplished by changing only the con­
figuration files, We were able to create an entirely new
program, to measure the identification of sequences of
animal sounds, simply by modifying both the graphical
interface and the configuration files. This new program
presents the subject with a series of random sequences
made up of four animal sounds (bark, moo, cock-a­
doodle-do, and tweet), and it prompts the subject to iden­
tify the sequence by moving sliders on the screen to match
a picture of the animal to the sound (Figure 3). To create
this new program, pictures of the animals were added to
the graphical interface, four sliders removed (leaving four

on the screen, one for each sound in the sequence), and
the text changed to describe the new test. The configura­
tion files were changed to specify the new collection of
animal sounds. It is significant that this new program was
created without modifying a single line of code and was
thus quite quickly completed.

Although much of the program development is done
within the Interface Builder, the source code is written
in Edit, a simple text editor. While developing the pro­
gram, necessary debugging was accomplished by liber­
ally sprinkling our code with printf statements, enabling
observation of the progress of the program as it ran in
a UNIX shell. NeXT includes GDB, the GNU source­
level debugger, as part of the standard programming en­
vironment, although effort was not made to learn it. The
actual compile and linking process is automated in the In­
terface Builder, so that a single menu command updates
a make file and runs the compiler and linker, pulling
together all the relevant pieces of code. Finished programs
tend to be large; 300K is not unusual for even a simple
application.

Most but not all of the documentation necessary for
programming the NeXT is provided on line; a hard-copy
version is much harder to obtain, unless one is willing
to print the entire unbound manual. Months passed be­
fore the prerelease version of the System 1.0 documen­
tation arrived, but once it came, programming produc­
tivity markedly increased. With the introduction of the
new System 2.0, we are once again without the appropri­
ate programming manuals.

SYSTEM ADMINISTRATION:
MANAGING THE COMPUTER

The effort in maintaining and operating the NeXT com­
puter has significantly affected the development of our
programs for auditory research. Although most personal
computers (MS-DOS, Macintosh) require little main­
tenance beyond keeping the hard disk organized, our
NeXT required almost constant attention to keep the sys­
tem running smoothly, occupying a large proportion of
the time of the main programmer. The difficulties stem
from the multiuser, multitasking UNIX system; such a
system is normally considered complex enough to war­
rant hiring one or two system administrators, as is the
case with VAX and SUN mainframes on our campus.
Having no choice but to do the work ourselves meant ul­
timately that a great amount of time was spent learning
about UNIX.

The biggest concern is managing programs and data on
the hard disk. Although our system has 330 MB of
storage, we typically operate with only 25 MB of free
space. Approximately 240 MB are permanently occupied
by the UNIX operating system, on-line documentation,
and NeXT applications, while the rest contains essential
data and programs developed for our research. Other large
files are stored on removable optical disks. The conse­
quence is that although the system appears to have con-

siderable hard disk space, in fact the disk is almost al­
ways nearly filled to capacity. With four active users, the
hard disk would often be filled, preventing the saving of
files until considerable time was spent cleaning up. Bugs
in the system exacerbate the situation: the swap file, part
of the virtual memory system, can grow without bound,
thereby depleting hard disk space and eventually causing
a system crash, usually destroying data in the process.
(This bug is related to a memory leak in the Sound Kit,
which has not been fixed in System 2.0.) Similarly, when
a program crashes, the system often creates a core dump,
a 4-MB file that also consumes hard disk space and is of
no use; we routinely delete these.

Backing up the hard disk onto opticals consumes con­
siderable time, and since one is often prompted by the sys­
tem during backup, it is necessary to attend to the console
throughout the entire process. Apparently there are UNIX
commands to facilitate the backup (System 2.0 documents
this in theNetwork and System Administration manual), but
corresponding file-retrieval procedures were judged to be
too difficult for our average users. Much more serious is
the inability to back up optical disks. Because each optical
disk holds 256 MB, there is too much data to copy the en­
tire disk into the hard disk's free space, and there appears
to be no way to copy data directly from one optical disk
onto another. Because we store some raw data directly onto
optical disks, we settle for backing up only essential files,
Incidentally, optical disks docrash, and a call to NeXT tech­
nical support was necessaryto recover the data the several
times that this happened. No data were lost, but much time
was expended recovering files. No optical crashes have oc­
curred, in our lab, under System 2.0.

Another large task was to establish data links to other
computers on campus, including asynchronous serial links
to a SUN mainframe (for data analyses) and a local ffiM
PC, and to establish an Ethernet connection to the campus
network and worldwide Internet. We also use Ethernet
to link our two NeXT systems together in order to share
files and establish network-wide user accounts as
described in the NeXT System Administration Manuals.
This enables us to move data quite effortlessly now, but
it did take much delving into the depths of UNIX and again
took time away from other research. Moreover, the net­
work solution is not perfect, <or instance, we have not
found an easy way to mount an optical disk on one NeXT
so that it is accessible on a remote machine, despite calls
to and a visit from our NeXT representative.

Keeping track of four users on our system, regulating
their disk usage, maintaining some security between their
accounts, managing commonly accessed programs and
files, and educating the users on how to take best advan­
tage of the computer also takes time. There is also a feel­
ing that much is left undone-for instance, backups should
be automatic, and some cron processes that execute au­
tomatically are probably building large files about which
we have no knowledge. Nevertheless, access to the power
of a UNIX system is attractive in many ways.

NEXT AUDITORY PATTERNS 531

CONCLUSION

Our focus on the Auditory Sequence Tracker represents
but one of many possible applications of the NeXT for
research in human information processing. Moreover, for
just this one application, the NeXT has opened up future
directions for research of both theoretical and practical
interest. For example, easy alteration of the parameters
in the basic task has permitted us to explore theoretical
issues concerning structure of the sets or scales of tones
in the sequence, as well as the tempo of the tones (Co­
hen, Frankland, Lamoureux, & Dunphy, 1990). Trans­
lation of tones for environmental sounds represented by
pictures has enabled developmental studies with young
children. Modality specificity of the phenomena we have
observed can be examined by using visually presented
digits rather than tones. Transformations of the two­
dimensional interface to various unidimensional response
panels allows us to consider the role of the design of in­
terfaces in tracking tasks. The NeXT, by making a vari­
ety of paradigms available, enables us to discover the
shared or converging operations underlying an aspect of
perception or cognition and to separate out the effects that
reflect the particular method used. Many of these types
of issues would be markedly more difficult to address with
other softwarelhardware configurations, and-we empha­
size-CD quality is standard on the NeXT, which is an
important consideration for auditory research. As it
stands, it seems that the NeXT can well support a com­
plete research program devoted to the understanding of
auditory pattern sequence perception and promises much
for other areas as well. Nevertheless, as indicated by the
description of development and management in this one
instance, the availability of high-level support personnel
is essential at least in these initial stages of NeXT's his­
tory. This is no doubt why NeXT has linked a support
program with sales on university campuses. In many
cases, by the time behavioral researchers read this arti­
cle, such support programs may be well in place for fruit­
ful exploitation of NeXT's potential.

REFERENCES

BoLTZ, M., '" JONES, M. R. (1986). Does rule recursion make melo­
dies easier to reproduce? If not, what does? Cognitive Psychology,
18, 389-431.

COHEN, A. J., '" FRANKLAND, B. (1990). Scale and serial order infor­
mation in melodic perception: Independence or interdependence?
Canadian Acoustics, 18, 2-10.

COHEN, A. J., FRANKLAND, B., LAMOUREUX, M., '" DUNPHY, D.
(1990). Effects of tonesetsand serialorder on melodic tracking.Jour­
nal of the Acoustical Society ofAmerica, 88, 591. (Abstract)

COHEN, A. J., '" MIESZKOWSKI. M. (1989). Frequency synthesiswith
the Commodore Amiga for research on perception and memory of
pitch. Behavior Research Methods. Instruments, eft Computers. 21.
623-626.

HEATHCOTE, A. (1988). Screencontrol and timing routinesfor themM
microcomputer familyusinga high-levellanguage.Behavior Research
Methods, Instruments, eft Computers. 20. 289-297.

532 COHEN, LAMOUREUX, AND DUNPHY

JAFFE, D., ok BoYNTON, L. (1989). An overview of the Sound and Music
Kits for the NeXT computer. Computer Music Journal, 13, 48-55.

KElLEY, J. M., ok HIGGINS, T. (1989). Precision timing options for the
Apple Macintosh family of computers. Behavior Research Methods,
Instruments, & Computers, 21, 259-264.

LAMOUREUX, M., okCOHEN, A. J. (1990). Evaluationof the NeXT com­
puter system for auditory research. Journal ofthe Acoustical Society
of America, 88, S92. (Abstract)

REsTLE, F. (1970). Serialpattern learning. Journal ofExperimental Psy­
chology, 83, 120-125.

THOMPSON, T., ok BARAN, N. (1988). The NeXT computer. Byte, 13,
102-114.

THOMPSON, T., okSMlTH, B. (1990). Sizing upthecube. Byte,15,169-176.
WARREN, R. M., ok BYRNES, D. L. (1975). Temporal discrimination of

recycled tonalsequences: Pattern matchingand namingof order by un­
trained listeners. Perception & Psychophysics, 18, 273-280.

WEBSTER, B. F. (1989). The NeXTbook. New York: Addison-Wesley.
WESTALL, R. F., PERKEY, M. N., ok CHUTE, D. L. (1989). Millisecond

timing on the Apple Macintosh: Updating Drexel's MiliiTimer. Be­
havior Research Methods, Instruments, & Computers, 21, 540-547.

NOTES

I. The upgrade basedOIl the Motorola 68040microprocessor was avail­
able in October 1990. Its floating-point performance is claimed to be up
to 10 times faster than the 68030's.

2. We suspect that the new systems released by NeXT use identical
sound hardware and would thus have equivalent specifications, but we
have not yet measured them. Version 2.1 of the operatingsystem has also
been released.

APPENDIX

The following instructions describe how to build the interface
for the Auditory Sequence Tracker (Figure I) and, subsequently,
how to change it for a different subject population or different
research issue. This tutorial is clearer if one constantly refers to
Figure I and occasionally glances back to previous instructions
and conunands should a subsequent section become unclear.

We include the tutorial in full detail for a number of reasons.
First, a reader of thisarticle may have access to a NeXT machine
but no access to a manual. The availability of this tutorial will
provide a means of examining the Interface Builder immediately.
Second, the full detail reflects the true picture of just how easy
or difficult the task is. We might have left out instructions on
how to produce the numbers for slider positions, for example.
On the surface, these look no more difficult to produce than the
identifications for buttons. This is not the case, and it is well
for the prospective user to know it. By no means, however, do
we aim to provide a general tutorial with the present example.

Launching the Interface Builder
from System Release 2.0 Extended

Assuming you have just logged on to the NeXT computer (Sys­
tem Release 2.0 Extended), the File Viewer, the main direc­
tory for the NeXT, will appear in the center of your screen.
To launch the Interface Builder, select NextApps (which con­
tains the NeXT applications available to your system) from the
left column of the File Viewer. Then, from the adjacent sub­
directory of application names, double click on the application
name Interface Builder.

Getting Started
Once the Interface Builder is launched, the 18 menu will ap­

pear to the left (Figure 2a) along with the Palettes window to
the right (Figure 2b). The 18 menu provides a list of commands
andoptions, and the Palettes window contains predefined ob­
jects from which the interface can be built.

Begin a new application by choosing File from the 18 menu.
From the submenu which now appears, choose New Applica­
tion. A menu and two windows will appear. The empty win­
dow entitled MyWindow appears at the top center of the screen.
MyWindow is the interface foundation and Palettes provides the
building blocks. At the bottom left is a window entitled UNTI­
TLED followed by your user name (also called file window;
see Figure AI). UNTITLED is the default name of the appli­
cation and thus the application menu until the file is saved (at
which time both will assume the name of the saved file), Be­
tween the two windows is an untitled menu that will become
the main menu for your ftnished application.

The File window contains seven icons, two of which represent
themenu for theapplication (MainMenu) and thestandard empty
window (MyWindow, referred to here also as the main win­
dow), respectively. Of the remaining icons in thiswindow, Icons
and Sounds allow for the addition of symbols or drawings (.tiff
or .eps) and the addition of sound files (.snd). File's Owner,
Classes, and First Responder are not really utilized in this in­
terface and therefore will not be referred to; for present pur­
poses, only MyWindow and Icons will be discussed.

Since many applications can run simultaneously on the NeXT,
the screen can at times become cluttered with open windows;
thus, changing applications can result from simply clicking on
a window belonging to another application. Therefore, to en­
sure that the right application is activated, refer to the title of
the menu in the upper left comer. For example, the menu now
should read "18". Click anywhere on the File Viewer panel
(the main directory for NeXT) andsee that the menu title now
reads Workspace. To return to the Interface Builder, click any-

Figure AI. File's Owner window.

where on the MyWindow window, and it will become the fore­
ground work area. The File Viewer will move behind the main
window until it is selected again for the foreground. Note that
the MyWindow title also belongs to a small icon in the File win­
dow. They are essentially one and the same; that is, the one
is a miniaturized version of the other. Double clicking on this
icon will activate the window or bring it to the forefront.

Resizing "MyWindow"
To start building the Auditory Sequence Tracker, we must

first resize the MyWindow to allow for a larger interface. This
may be accomplished by dragsizing the bottom comer of the
window to the appropriate x,y coordinates (a marquee will ap­
pear to aid in resizing). However, exact alterations of dimen­
sions can be more precisely performed by selecting Inspector
under the m submenu of Tools. The Inspector window appears
displaying the attributes of the window (Figure A2, panel a).
Note that the top bar of the Inspector window is black (an indi­
cator that the Inspector has been clicked or selected to be ac­
tive) while the bar on MyWindow is now a dark gray. This color
change to dark gray indicates which panel or window the In­
spector is presently inspecting. The Inspector's title reads Win­
dow Inspector, indicating what item is being inspected. Ifa but­
ton had been the object selected for inspection, the title would
read Button Inspector. To select any other window or object
for inspection, simply click on it and the Inspector will change
accordingly.

Attributes, thepresent submenu in the Inspector, alters graphic
and nongraphic attributes, such as a button's title alignment or
a slider's maximum and minimum values. Using the Window
Inspector's controls and options available under Attributes, we
can change how the window will respond during the running
of the program and its title. At this point, change the name that
appears on the title bar from MyWindow to Auditory Sequence

a)

NEXT AUDITORY PATTERNS 533

Tracker. This change is made by typing in the new title over
the highlighted title My Window; clicking the OK button will
execute the title change. Under Controls, click the Miniaturize,
Close, and Resize Bar switches so that they are not check-marked
on. Turning these switches off protects inadvertent manipula­
tions of the interface (such as resizing or closing) by subjects
in the experiment. Click the OK button to register the changes.

Click on Attributes and a pop-up menu will appear contain­
ing other Inspector submenus-Connections, Autosizing, Mis­
cellaneous, Class, and Project. While still depressing the mouse
button, drag the cursor down to rest on the Miscellaneous but­
ton and release. The Miscellaneous function (Figure A2,
panel b) allows for changes to the numerical coordinates of ob­
jects or windows, with x and y referring to the position of the
object with respect to the main window (or computer screen,
depending on the nature of the object) and w and h referring
to width and height of the object or window. Set the position
atx = 170, Y = 55, and the window's size at w = 741, h =
637 (in this case, the window's position refers to its position
within the boundaries of the screen). When OK is clicked or
the Return key is pressed, the window will adjust to match the
new coordinates.

Adding Objects
The interface is built from an alphabet of objects in thePalettes

window (see Figure 2b). Adding objects to the application is
the easiest part of creating the interface. The desired object is
simply dragged from the Palettes window to the preferred posi­
tion on your application.

Creating the "Go" and "Done" buttons. Select the Palettes
window to be the front window and drag over a button. (Note
that the Palettes window's top bar does not tum black. Since
this window is used only as an object depot, it need not be acti­
vated to be utilized.) Dragging is done by clicking on thedesired

b)

Figure Al. (a) Attributes option of the Window Inspector. (b) Miscellaneous option of the
Window Inspector.

534 COHEN, LAMOUREUX, AND DUNPHY

object in the Palettes window (in this instance, the button) and
moving it (while the mouse button is depressed) to the main win­
dow; to anchor the object, release the mouse button. The but­
ton object is surrounded by tiny squares. These squares or con­
trol points, which are only visible when the object is selected,
allow for manipulation of the object. (Note that the Window
Inspector is now entitled Button Inspector.) In order for the ob­
ject to no longer be selected, click elsewhere on the window
(this selects the window, and the Inspector is once again the Win­
dow Inspector). Click again on the button and then on anyone
of the button's control points so that it turns white, and drag
it to the desired size as shown in Figure I. If the square does
not tum white, you have missed grabbing the control point and
as a result will only move the button to a new location. With
the button still selected, refer to the Inspector's Miscellaneous
submenu for a more precise resizing or replacement. The size
and position of the button selected for the Auditory Sequence
Tracker were x = 40, y = 278, w = 74, and h = 271. Now
click the OK button. A button of that size was used for a Go
and a Done button on the Tester Interface.

To change the title on the button from Button to Go, you may
either select the submenu Attributes from the Button Inspector
and enter a new name or double click on the button until the
title is highlighted and then type in a new title. By selecting the
Font Panel in the Format submenu from the main m menu, you
may choose a desired font size for your title-in this case, Hel­
vetica, bold, 24.0 points. In the Attributes submenu, you can
also alter the button's borders and the alignment of titles, as well
as how the button responds when pushed (whether it acts as an
on/off button or momentarily changes to display an alternate
title, etc.) But for now, let the button take its default qualities
(e.g., bordered with central alignment of its title and its type
Mom. Push).

To create a Done button equal in size to the Go button, do
one of two things. The first is to grab another button from
Palettes and repeat the previous procedure of dragsizing or nu­
merical manipulation. A second faster option is to select the Go
button and, utilizing the m Edit submenu, select Copy and then
select Paste. This will create an identical button for you to place
where you wish. Again using the Button Inspector's Miscellane­
ous function, place the new button at the same y coordinate as
the first button (278) and at the new x coordinate of 621. Change
the title to Done.

Periodically you should save your work. Within the top bar
at the right of the File window (UNTITLED-/user name) is
a small Saved indicator that informs you that the file has been
saved (a solid X) or that it contains unsaved changes (a broken
x). See and compare the top right x of Figure 2b (saved) and
Figure Al (unsaved). At the moment, your file has not been
saved, so the small square at the top right of the black bar con­
tains a broken x. When you eventually save it, with the Save
command found under the m submenu File, the x will be solid.
The interface file can be identified by a .nib file extension. The
File window (the UNTITLED-/user name window; see
Figure AI) will take the name that you saved your application
under, followed by your user name. If you saved the file under
a name other than UNTITLED, the File window and your small
application menu will accommodate the new title.

Creating sliders. To create the row of sliders, we will fashion
a prototype slider and copy it to produce a row of eight. First
drag over a vertical slider from the Palettes window and place
it anywhere. (If the Palettes window is partially hidden, click
anywhere on it and the Palettes window will become the fore­
ground.) Note that the control points appear on the sliders as

well. Unlike buttons, which can be manipulated in height and
width, the slider can only change in its height. The width is al­
ways 16 points.

Select the vertical slider and the Miscellaneous submenu in
the Slider Inspector to change its position within the window
by changing the x and y values. In the Auditory Sequence
Tracker, the slider height selected was 361 points andthe default
width was 16 points. Set the first slider at the coordinates x =
210, y = 216, and h = 361.

Viewing the Attributes of the slider in Inspector, note that
the default maximum, minimum, and current values set the slider
button square in the middle. The experiment, however, requires
that the slider buttons start at the bottom. Set the minimum and
current values to 0 and click OK; the slider button will drop
to the bottom.

Click on the slider so that its control points are visible, and
use the m edit functions Copy and Paste, found under Edit, to
create another slider. With the Miscellaneous x and y values,
set the second slider at x = 250, y = 216. Using the second
slider, copy andpaste for a total of eight sliders. Now we will
use an alignment command to make all the sliders an equal dis­
tance apart, given the dimensions provided by the first two
sliders. Click anywhere on the inside of the main window (ex­
cept on an object) and drag the cursor. A marquee will appear;
drag it so that it encircles part of all the sliders. This selects
the control points of all sliders. Now, select from the m sub­
menu Layout, the submenu Align and its submenu command
Make Row. (Hint: the marquee will select the control points
of any object it touches; it need not surround the entire object.)
At this point, your window should have eight sliders in a row
and two large buttons on either side.

Adding numbers and reference Hoes. To provide numeri­
cal reference points for the sliders, we will produce rows and
columns of numbers by creating a prototype object; from that
matrix, set the spacing and change the matrix of 8s to the ap­
propriate numbers. This method may seem a little tedious, but
it is the most effective. Through the creation of an 8 x 8 matrix,
the numbers can be treated as a unit (size, position, and other
characteristics for all can be changed simultaneously), and in
the long run this is more efficient.

First, grab the Title object from the Palettes window anddrag
it over to the main window. Double click the object until the
title is highlighted. Change the title to the number 8, with the
font at Helvetica, size 14.0 points. To create the matrix, first
reduce the surrounding area by closing in the control points.
This elimination of the extra space surrounding the 8 will result
in a more accurate matrix. In Attributes, change the characteris­
tics of the 8 so that its text is white, and the border and back­
ground invisible (i.e., both the Background Gray and Border
option at the farleft). Be sure to press OK to activate the com­
mands. Utilizing the Miscellaneous function, place the object
at x = 231 and y = 547. Its position should be between the
first two sliders. To create a matrix of 8s, Alternate-drag (that
is, simultaneously press the Alternate key on the keyboard and
click on a control point, which will tum white, and drag) the
right bottom control point to create an evenly spaced 8 x 8
matrix of 8s (if the present action only resulted in enlarging the
space surrounding the 8, try again making sure that the Alter­
nate key is pressed first before you click on the control point
and that the Alternate key and mouse button remain depressed
while you drag). To widen the space between the numbers,
Command-drag (using the Command key). Use the Command­
drag function to space the matrix so that one row of numbers
is between adjacent sliders and the columns are almost as long

as the slider (see Figure I). Note that the number matrix now
overlaps the sliders. To solve this problem, use the Attributes
menu to ensure that the background of the matrix is invisible.
Use the Send to Back command under Layout to send the matrix
behind the sliders so that the overlap (which is still there, only
the background is invisible) does not interfere with the func­
tioning of the sliders in the test mode. Select the Cells Match
Prototype option (in Matrix Inspector) and click OK. Double
click on each of the 8s and change accordingly, so that the end
result is ascending rows of numbers as in Figure I.

Finally, reference lines are needed to assist the subject in de­
termining the appropriate placement of the sliders. These lines
may be created by utilizing keyboard characters, a Title object,
and the Alternate-drag and Command-drag functions. As with
the previous instructions, drag a Title object from Palettes, and
double click until "Title" is highlighted and ready to be re­
named. Using the Alternate-dash character (-, produced by
simultaneously pressing the modifier key Alternate andthe dash
symbol found in the number row; the dash alone will only pro­
duce a dashed line as opposed to a solid line), create a solid
line long enough to intersect the eight sliders and then some.
Move this new line so that it bisects the row of 8s. Alternate­
drag to create a total of eight lines, and then Command-drag
so that their placement will bisect their corresponding numbers;
now make the background of the matrix invisible and "Send
to Back" using the command found under Layout.

Numbering sUders. To number the sliders, drag the prede­
fined object Title from the Palettes window and place it under
the first slider. Double click the object until the title is high­
lighted. Change the title to the number 1 and close in the con­
trol points to reduce its surrounding area; place at x = 210, y =

190. Alternate-drag to create eight Is and then Command-drag
to space them across the width of the sliders. (If you have not
first condensed the space occupied by the Title, you will note
that when you Alternate- and Command-drag the Is they may
not line up with the sliders.) Double click on each of the last
seven Is, and in an ascending numerical order change the nu­
merical titles.

Labelling x- and y-axes. Drag another Title object onto the
main window, double click until highlighted, and type in the
title Order of Presentation of Tones. Place the title at the bot­
tom center of the eight sliders, x = 223, y = 157. To create
the High and Low titles on the y-axis, drag two more Title ob­
jects and type in the appropriate words. Copy and paste both
titles, and place them at each comer of the slider group-Low
left and right bottom, High left and right top.

Feedback fields. In order for the subjects to receive feed­
back, a predefined Field object is required. Move this object
from the Palettes window to the bottom right of the sliders. To
change the labels, double click on the word Fieldl to highlight
the label and its accompanying text field. Double click again
to highlight only Field I , andtype in Trial Number. Do the same
for Field2, and change the label to Number Wrong. Using Mis­
cellaneous, place the fields at the bottom right of the sliders (x =
570, y = 60).

Boxed instructions. To create the instructions box at the bot­
tom of the display, place two predefmed Text objects at the bot­
tom center and size one to fit your instructions and the other
to fit the title Instructions (the separate boxes are required be­
cause a text field will recognize only one font). The text object
will automatically adjust its size to fit the text. However, it is
more likely to wrap the words around than to adjust the width.
Simply alter the width of the text object after the typing is com-

NEXT AUDITORY PATTERNS 535

plete, and the text will adjust itself to the new width. (See
Figure I for the set of instructions.) Again, save your work.

TestIng the Interface
Now all graphical aspects of the interface are complete. With

theTest Interface command under thesubmenu File, theresponse
of the application can be tested at this preliminary stage. Since
this is only the skeleton without programming, the buttons will
not start the program or playa tone sequence. They will, how­
ever, respond as they would in the experiment when activated
with the mouse. Thus, clicking on the Go button highlights it,
andclicking on the slider knob andmoving thecursor will move
the slider button. (If your sliders do not cooperate, check to see
if the number matrix was sent to the back of the sliders.) To
quit the testing mode and return to m, click the Quit command
on the menu.

Adapting the Interface for a Different Task

In this section, we describe how to alter the interface with
tone patterns for adults (see Figure I) to one with animal sounds
for children (see Figure 3).

Preliminary Changes
Before beginning to make changes, save your mfile under

a different nameso that new changes will not destroy your saved
file. Select Save As under File and give it a new name.

To make the adaptation, some sliders and titles must first be
eliminated from the original interface. By clicking on the win­
dow and dragging a marquee around the last four sliders and
touching the area encompassing the text fields as well as titles
in that area, the selected items can be easily removed. You will
note that the marquee can cover a large area and select a num­
ber of objects. Since the line and number matrices were under
the selected sliders, these will be deleted as well. Now, to re­
move the selected objects, press the delete key or use the com­
mand Cut in the Edit submenu to remove these items. On the
other side, remove the High and Low titles.

To accommodate the larger application, increase the window
size to w = 869 and h = 666. Change the instructions to match
Figure 3. Alter the size of the Go and Done button (using Mis­
cellaneous) to a height of 269 points and a width of 131. The
Done button is placed at x = 696, y = 255 and the Go at x =
58, y = 255. Double click the Done button to change its name
to Stop.

Set the sliders so that they are 106 points apart and increase
their size to 206. Add a new Title object, Alternate-drag to cre­
ate four titles, and double click to change them to lst, 2nd, and
so on.

Adding Animal Icons
Next we need animal pictures, which can be borrowed from

theDigital Webster provided by theNeXT. In File Viewer, select
the NextApps anddouble click to start the Webster application.
If you ask for the definition of dog, another window should ap­
pearsupplying the picture of a dog. (If the image of the dog does
not appear, first view the options under Preferences ... to see
if pictures are selected to be viewed; then check for a picture
directory under NextLibrary/References/Webster-Dictionary di­
rectories to see if your copy of the Digital Webster is equipped
to provide pictures.) To utilize the image provided by the NeXT,
we need to screen grab the image. Screen grabbing is done
through the application Icon.app. The following instructions will

536 COHEN, LAMOUREUX, AND DUNPHY

inform as to how an image is grabbed, scaled down to fit, and
saved for use in the new application.

Icons. Icons are small pictorial or graphic representations of
an application, file, directory, or document. They are created
by using Icon: The Pixel Manipulation Device, a demo appli­
cation available on the NeXT. This program also enables one
to create designs, logos, images, or pictures for use in the inter­
face Builder or other applicable programs. To build an icon or
in this case manipulate an image already provided, launch the
Icon Builder from the File Viewer's NeXTDeveloper/Demos
directory. Double click on the application name Icon.app. Once
the application is launched, the main menu entitled Icon appears
along with Tools and the Inspector Panel. Select New under the
Image submenu. A blank window appears, called Untitledl.tiff;
this window is your canvas. The Tools palette contains the differ­
ent drawing tools you may use. The Inspection panel is similar
to the m Inspector in that its options change with tool selec­
tion. You may want to first experiment with this application to
become familiar with its capabilities.

Screen grabbing. The Icon application also allows for screen
grabbing an image and manipulating its dimensions, in this case
Digital Webster's image of a dog. Under Image select Grab ... ,
and the cursor will tum into a small right angle. Move the right
angle to the dog window and drag a marquee around the dog.
When the mouse button is released, the grabbed image will ap­
pear within an Untitled2.tiff window.

Reducing the image. Note that there are pointer lines and
numbers on the picture. Use your ingenuity and your newly
found Icon skills to eliminate this irrelevant material ifyou wish,
and make the image resemble that in Figure 3. For the purpose
of this exercise, it is not necessary to remove the irrelevant
material. We must, however, reduce the size of the dog so that
it will fit on buttons in the new Auditory Sequence Tracker. Drag
a marquee around the dog (by clicking on the bottom right square
in Tools, the marquee is activated) or click on Select All under
Edit, which will automatically put a marquee around the entire
contents of the window. The Inspector Panel will switch its dis­
play to Marquee/Lasso Options. Select the scale effect, which
is the third button from the bottom right. When that button is
selected, the cursor will change to a crosshatch of arrows. Click
and hold down the mouse button inside the marquee, then drag
in the direction in which the image is to be scaled. When the
mouse is let up or unclicked, the marquee is reimaged at its new
scale and the scale button is no longer highlighted, thus ending
the operation. In order to equate the size of the animals, we need
a set of coordinate reference points. The coordinates display is
found on the Tools panel. When the coordinates display is acti­
vated or selected (by clicking on the button entitled Coordinates)
the first two numbers in the display will be the x and y scale

values, which are updated as you scale the marquee; the sec­
ond set will be the scaling percentage. To proportionally scale
the image, make sure these two x,y values are equal at the end
of the scale operation. For present purposes, scale all animals
to the x and y coordinates of 90 and 90, respectively. Clicking
outside of the scaled marquee will cause it to vanish; you will
then have to repeat the process.

Saving. If this new reduced and marqueed image is to your
liking, save it by clicking Save under the submenu Image. A
Save Image panel will open. From here, you can save the im­
age within the marquee instead of the entire window by click­
ing the SAVE DOCUMENT button (with the image of an is­
land and palm tree) so that only the palm tree is marqueed and
the button now reads SAVE SELECTION. Type in the title of
your new icon, save it in your desired file or location, and OK
(a .tiff file extension will be added). Only the reduced image
(or icon) is saved. The window will, however, still be called
Untitled.tiff, and the Save indicator at the top right shows that
your window has not been saved. This is true; only your selected
section of the window has been saved. To double-check that only
the icon has been saved, use the submenu command Image and
Open to open your saved section and assure yourself of its exis­
tence. Using the Digital Webster and Icon, create and reduce
.tiff files for the remaining animals.

Adding .TIFF FOes to Interface BuDder
In the Interface Builder, you must add the new animal icon

to the icon suitcase in order to utilize it. From the File Viewer
select and drag each.tiff file icon (TIFF) from the File Viewer
to the icon suitcase in your Interface Builder file, The case will
open to store the icon, and a small window will appear to show
your stored icons along with five standard ones. To place the
icons beside the slider, buttons are needed. A button need not
be sized to accept an icon; it will adjust itself to fit the icon.
Icons can be placed on buttons by dragging the .tiff files from
the Store window of the suitcase directly to a button. A black
outline will surround the button that is immediately below the
image to aid in placement. To eliminate the border around the
button so that only the icon is visible, select the option under
Attributes to remove the borders. Also under Options, tum the
Disable switch on, so that if the button is pressed during the
running of the program nothing will happen. Follow this proce­
dure for the four animal icons. Proceed with the adaptation of
the application. Now that the skeleton has been created, we need
only program the application so that when Go is clicked, a se­
quence of animal sounds will be produced.

(Manuscript received September 24, 1990;
revision accepted for publication June 10, 1991.)

